If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-40x+76=0
a = 5; b = -40; c = +76;
Δ = b2-4ac
Δ = -402-4·5·76
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-4\sqrt{5}}{2*5}=\frac{40-4\sqrt{5}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+4\sqrt{5}}{2*5}=\frac{40+4\sqrt{5}}{10} $
| P+a=20 | | -3w-32=7(w+4) | | A+p=20 | | 4.3^2+b^2=10^2 | | 18=7b+8 | | X=4+40i/4 | | 9-k+87=67k-9 | | 13.75x=165 | | A-4/2=3a/4+a-27/6 | | √3x-1=5 | | 2m+12=2(m-3)+4 | | (2x-14)^1/2=x-7 | | 12–3x=-3 | | 5x+22=4x+50 | | 5x+22=4x50 | | -0.75n+1-0.25n=-100 | | -0.75+1-0.25n=-100 | | 9x+-61=-7 | | 9–2x=23 | | -6(2x+5)-2x=3(4x-3)-5 | | 36=-x+160 | | (1.4)x=7(1.33)x | | 8-u=235 | | 292=-w+30 | | 10-2x=12x+3 | | 15y=36+9y | | (x^2-2x-5)^2-2(x^2-2x-3)-4=0 | | 15y=36=9y | | 2a^2+12a=-10 | | f=9/5(12)+32 | | 8k-3=27 | | c=5/9(26) |